Harun Yahya

23 Haziran 2010 Çarşamba

Nutrients in Plants Emerge as the Result of Photosynthesis

Another essential product of this perfect system is a food source for living things. In that sense, the products of photosynthesis are extremely important for plants themselves and for other living things. Both animals and plants obtain the energy they need to live by consuming these foods produced by plants. Animal-product foods can exist only by virtue of products obtained from plants.
If we imagined that the events we have been discussing took place not in the leaves but in some other place, what kind of set-up would we imagine? Would it be a multi-functional factory with tools which served to create nutriments from the carbon-dioxide from the air, which also had machines with the capacity to make oxygen and release it, and which contained systems capable of maintaining temperature balances?
One would certainly not imagine something the size of the palm of one's hand. As we have seen, leaves, the possessors of perfect mechanisms, maintain temperature, allow evaporation, and at the same time produce food and prevent water loss. They are a wonder of design. All these processes we have listed take place not in different structures, but in just one leaf (of whatever size), moreover in a single cell of a single leaf, and what is more, all at once.
The foregoing facts all point to the functions of plants, all being blessings that have been created with the aim of serving living things. Most of these blessings have been designed for mankind itself. Let us take a look at our environment and what we eat. Let us look at the bone-dry stem of the grapevine, at its thin roots. Fifty or 60 kilos of grapes come from this structure which can easily break with a single pull. Grapes-whose colour, smell, and taste have been specially designed to appeal to man.

Plants are the most important factor in maintaining the world's ecological balance. We can easily see this by means of a comparison. For example, all living creatures in the world take in oxygen and give off only carbon-dioxide, heat, and water vapour to the atmosphere. Also, as a result of processes such as production in factories and transportation, certain quantities of carbon-dioxide and heat are diffused into the air. In the opposite way to all other living things, plants take carbon-dioxide and heat from the air. They use these two things to carry out photosynthesis, continuously giving off oxygen to the air. To claim that such a sensitive equilibrium came about by coincidence, would be unintelligent and unscientific.
Let us consider the watermelon. This water-filled fruit emerges from the bone-dry ground at just the time when a person needs it, in the summer. Let us consider that wonderful watermelon smell and that famous watermelon taste, which it maintains in an expert manner from the moment it emerges. Then let us think about the processes in a perfume-manufacturing factory, from the creation of the scent to its maintenance. Let us compare the quality of the product from the factory and the scent of the watermelon. While manufacturing scents, people carry out quality controls all the time, but there is no need for any quality controls to conserve the scents in fruits. Melons, watermelons, oranges, lemons, pineapples, coconuts, all possess the same unique scents and flavours, wherever they may be in the world, without exception. A melon never smells like a watermelon, nor a mandarin like a strawberry: although they all emerge from the same ground, their smells never get mixed up. They all always conserve their original fragrances.

When one thinks of the tastes, smells, and flavours of fruit and vegetables, one wonders how such a variety could have come about. Of course, it is not the grapes, watermelons, melons, kiwi fruit, and pineapples themselves, which all come from the same soil and use the same water and minerals, which form the different tastes and scents. These incomparable flavours, shapes, and tastes have been given to them by God.
Let us examine the structure of this fruit in more detail. The sponge-like cells of the watermelon are able to retain large quantities of water. For this reason a large part of the watermelon consists of water. But this water is not all in one place, it is evenly distributed all over the watermelon. Bearing in mind the force of gravity, this water should mostly be in the bottom part of the fruit, with the top part being dry and fleshy. Whereas no such thing happens in the watermelon. Water is evenly distributed inside it, and the same applies to its sugar, taste, and smell.
And there is never any mistake in the setting out of the rows of seeds. Every seed carries the code of that watermelon which will be carried down to other generations thousands of years later. Every seed is coated in a special, protective covering. This is a perfect design, prepared with the intention of preventing any damage to the information inside it. The covering is neither hard nor soft, it has just the right amount of hardness and flexibility. Underneath the outer covering is a second layer. The areas where the upper and lower parts join are clear. These places are specially designed so that the seeds can cling on. Thanks to this construction, the seed only opens once it has reached the appropriate moisture and temperature levels. That flat, white part in the seed later germinates, turning into a green leaf.
Let us also consider the structure of the watermelon rind. What creates this smooth rind and the waxy coating on top of it is again the cells. For this waxy coating to form, every one of the cells has to give off the same level of waxy substance in the rind. Furthermore, what makes the rind smooth and round is the perfection in the layout of the watermelon cells. For this to happen, each cell must know its place. Otherwise there could never be this smoothness and perfect roundness of the outside of the watermelon. As we can see, there is a flawless harmony between the cells which go to make up the watermelon.
We can consider all the plants in the world in the same manner. At the end of such an examination we will arrive at the conclusion that plants have been designed for human beings and other living things, or in other words, created.
God, the Lord of all the worlds, made food for all living things, and created every one with different tastes, smells, and uses:

And (He has made subservient to you) also the things of varying colours He has created for you on the earth. There is certainly a Sign in that for people who pay heed. (Surat an-Nahl: 13)

And We sent down blessed water from the sky and made gardens grow by it and grain for harvesting and soaring date-palms laden with clusters of dates, as provision for Our servants; by it We brought a dead land to life. Such shall be the Resurrection. (Surah Qaf: 9-11)





Plants Are Cool, But Why?

A plant and a piece of stone in the same place do not warm up to the same degree, even though they receive the same amount of solar energy. Every living creature will experience negative effects if it stays out in the sun. So what is it that enables plants to be minimally affected by the heat? How do plants manage this? Why does nothing happen to plants even in great heat, even when its leaves burn in the sunshine all through a hot summer? Apart from their own internal warming, plants also take in heat from the outside and maintain the temperature balance in the world. And they themselves are exposed to this heat while carrying out this heat-retention process. So, instead of being affected by the ever-increasing temperature, how is it that plants can continue to take heat in from outside?
Considering that plants are constantly under the sun, it is natural that they should need more water than other living things. Plants also constantly lose water by the perspiration on their leaves. As we touched on in earlier sections, in order to prevent such water loss, the leaves, the surface of which are always turned towards the sun, are generally covered in a waterproof protective wax known as the cuticle. In this way water loss on the upper surfaces of leaves is prevented.
But what about the under surfaces? Because the plant loses water from there, the pores whose function is to enable the diffusion of gases are generally on the bottom surfaces. The opening and closing of the pores regulates the plant's taking in enough carbon-dioxide and giving off enough oxygen, but not in such a way as to lead to water loss.
In addition to this, plants disperse heat in different ways. There are two important heat dispersal mechanisms in plants. By means of one of these, if the temperature of a leaf is higher than that around it, air circulates from the leaf towards the outside. Air changes stemming from heat distribution lead to the air rising, because hot air is less dense than cold. For this reason the hot air on the surface of the leaf rises, leaving the surface. Because cold air is denser, it descends to the surface of the leaf. In this way heat is reduced and the leaf is cooled down. This process goes on for as long as the temperature on the surface of the leaf is greater than that outside. In very dry environments, such as deserts, this situation never changes.
By means of the other heat dispersal system of plants, leaves can perspire by giving off water vapour. By virtue of this perspiration, the evaporation of water permits the plant to cool down.
The above picture shows the perspiration on a plant called Alchemilla, in extremely humid conditions. Plants in such environments give off water via their leaves, both to cool down by giving off heat and to regulate humidity levels.
These dispersal systems have been designed to suit the conditions where the plant lives. Every plant possesses the systems it needs. Could this exceedingly complicated dispersal system have come about by coincidence? In order to answer this question, let us consider desert plants. The tissues of desert plants are often very thick and fleshy. They are designed to conserve rather than evaporate water. It would be lethal for these plants' heat dispersal systems to work by means of evaporation, because in a desert it is not possible to compensate for water loss. Although these plants can disperse heat by both methods, they only use one, which is also the only way for them to survive. Their design has obviously been carried out with desert conditions in mind. It is not possible to explain this by coincidences.
If plants did not possess these cooling-down systems, being under the sun for even a few hours would be lethal for them. One minute of direct sunlight in the afternoon can heat one centimetre of leaf surface by as much as 37 degrees centigrade. Plant cells start to die when the temperature rises to 50 to 60 degrees, in other words, just three minutes of direct sunlight in the afternoon would be enough for a plant to die.43 But plants are protected from lethal temperatures by means of these two mechanisms. The evaporation which plants also use in heat dispersal is also very important from the point of view of regulating the level of water vapour in the air. This evaporation in plants enables high levels of vapour to be released to the atmosphere regularly. This activity of plants could be described as a kind of water engineering. The trees in a thousand square metre area of forest can comfortably put 7.5 tons of water into the atmosphere.44 Trees are like giant water pumps, passing the water in the soil through their bodies and sending it into the atmosphere. This is a most important task. If they did not possess such a feature, the water cycle on the Earth would not happen as it does today, which would mean the destruction of the balances in the world.
Although their stems are covered with a wooden, dry substance, plants can pass tons of water through their bodies. They take this water from the soil, and after using it in various parts of the high technology factories in their bodies, give it back to nature as purified water. At the same time that they do this, they also separate part of their intake of water with the aim of using the hydrogen in the nutrition production process.45
What we have described as the perspiration in leaves or the moisture in the areas where the trees live, actually occur as the result of activities which are essential to the survival of life on the planet.
What we see in these processes of plants is a system of such perfection that it would run down and stop working if even one part of it were taken away. There is no doubt that it was God, the Compassionate and the Merciful, who is aware of all creation, who designed this system and flawlessly installed it in plants.

He is God - the Creator, the Maker, the Giver of Form. To Him belong the Most Beautiful Names. Everything in the heavens and earth glorifies Him. He is the Almighty, the All-Wise. (Surat al-Hashr: 24)


The Leaf: the Smallest Cleaning Tool

The services that plants carry out for other living things are not restricted to giving off oxygen and water. Leaves at the same time carry out the most highly developed cleansing and purification functions. The cleaning tools we regularly use in our daily lives, are produced and set in operation as the result of long studies by experts, and after the expenditure of a lot of effort and money. These need considerable technical support and maintenance, both during and after use. And after production these things can develop a number of problems. In addition, problems or defects which can arise on a daily basis, and the necessary staff and the need for other tools, and renewals where necessary, can all mean a great many more processes.
As we have seen, there are hundreds of details to consider, even in a small piece of cleaning equipment, whereas plants do the same job as these tools, in return for just sunlight and water, and perform the same cleaning service with the guarantee of greater efficiency. And they also give rise to no waste product problem, because the waste product they give off after cleaning the air is oxygen, which all living creatures need!
Tree leaves possess tiny filters, which catch pollutants in the air. There are thousands of tiny hairs and pores, invisible to the naked eye, on the surface of a leaf. The individual pores trap pollutants in the air and send them to other parts of the plant to be absorbed. When it rains, these substances are washed to the ground. These structures on the surfaces of leaves are only of the thickness of a film: but when one considers that there are millions of leaves in the world, it becomes clear that the amount of pollutants trapped by leaves is not to be underestimated. For example, a 100-year-old beech tree has about 500,000 leaves. The amount caught by these leaves is more than one might guess. About a thousand square metres of plane trees can trap 3.5 tons, and pine trees 2.5 tons of pollutants. These materials then fall to the ground with the first rain. The air in a forest two kilometres from a settlement area is some 70 percent cleaner than in the settlement area. Even in winter, when trees lose their leaves, they still filter out 60 percent of the dust in the air.
Trees can trap dust weighing five to 10 times more than their leaves: bacteria levels in an area with trees is considerably less than in one with no trees.46 These are very important figures.
Each thing that happens in leaves can be described as an individual miracle. These systems in green leaves, in the superb planning as in a microscopic factory, are proof of the creation of God, the Lord of all the worlds, and have come down to our day after hundreds of thousands of years, in the same perfect state, with no changes and no defects.


The Falling Leaves: Something We Have All Seen

Sunlight is very important for plants, and particularly for leaves, where food is produced. With the approach of winter, the air grows colder and the days shorter, and less light reaches the earth from the sun. This reduction causes changes in plants, and the aging process in leaves, or leaf fall, begins.
Before trees lose their leaves, they begin to absorb all the nourishing substances in the leaves. Their aim is to prevent substances such as potassium, phosphate, and nitrate from disappearing with the falling leaves. These substances are directed through the pipelines that run through the layers of bark and the centre of the trunk. The collection of these substances in the xylem makes it easier for them to be digested by the tree.
Trees have to shed their leaves, because in cold weather, the water in the soil increasingly solidifies and becomes harder to absorb. But the perspiration in the leaves continues, despite the cold weather. A leaf which continues to perspire at a time when there is less water starts to become a burden on the plant. In any case the cells in the leaf would freeze and break up in the cold days of winter. For which reason the tree acts early and frees itself of its leaves before winter arrives, and in this way its limited water reserves will not be wasted.47
This leaf fall, which looks like a purely physical process, actually comes about as the result of a sequence of chemical events.
In the cells in the palm of the leaf are pigments, called phytochromes, which are sensitive to light and give colour to plants. It is these molecules which allow the tree to realise that the nights are growing longer and that less light is reaching the leaves. When phytochromes sense this change they cause various changes within the leaf, and begin the leaf's aging programme.
One of the first signs of leaf aging is that the cells in the palm of the leaf begin to produce ethylene. The gas ethylene begins to destroy the chlorophyll which gives the leaf its green colour, in other words the tree withdraws the chlorophyll from the leaves. Ethylene gas also prevents the production of auxine, a growth hormone which delays the falling of the leaf. Together with the loss of chlorophyll, the leaf also starts to receive less energy from the sun, and produces less sugar. Furthermore, carotenoid, which have hitherto been suppressed and which give the leaf its rich colour, reveal themselves and in this way the leaf begins to change colour.48
A short while later, ethylene has spread to every part of the leaf, and when it reaches the leaf stalk, small cells there start to swell up and give rise to an increase in tension in the stalk. The number of cells in that part of the stalk which joins onto the trunk increases, and they begin to produce special enzymes. First of all, cellulase enzymes tear apart the membranes formed from cellulose, then pectinase enzymes tear apart the pectin layer which binds the cells to one another. The leaf can no longer bear this rising tension and starts to split, from the outer part of the stalk in.
These processes we have been describing so far may be described as the ceasing of food production and the leaf's starting to split off from the stalk. Rapid changes go on around the developing split, and the cells immediately begin to produce suberin. This substance slowly settles over the cellulose wall and strengthens it. All these cells leave behind them a large gap replacing the fungus layer, and die.49
What has been described so far shows that a string of interlinked events is necessary for just one leaf to fall. Phytochromes' determining that there is a reduction in sunlight, all the enzymes necessary to the falling of the leaf moving into action at the appropriate time, the cells beginning to produce suberin just at the place where the stalk will break off: it is clear what an extraordinary chain of events it takes for a leaf to detach itself. "Chance" cannot be offered as the explanation of this series of processes, all planned and following one another in perfect order. The leaf fall plan functions in a perfect manner.
Before the leaf is completely separated from the trunk, it no longer receives any water from the transport tubes, for which reason its grip on the place it is attached to grows progressively weaker. To break the leaf stalk, it will be enough for a moderate wind to blow.
In the dead leaf which falls to the soil are food substances that fungi and bacteria can make use of. These food substances undergo changes brought about by micro-organisms and become mixed with the soil. Trees can take these substances up again from the soil by their roots as nutriments.