Harun Yahya

23 Haziran 2010 Çarşamba

The Origin of Photosynthesis

In fact, all the impossibilities we have examined so far are enough to prove the invalidity of the evolution of plants scenario. But one single question will bring all the evolutionists' claims tumbling down without the need for all these explanations:
How did the process of photosynthesis, which has nothing resembling it in the whole world, come about?
According to the theory of evolution, in order to carry out photosynthesis, plant cells swallowed bacterial cells which could photosynthesize and turned them into chloroplasts. So, how did bacteria learn to carry out such a complicated process as photosynthesis? And why had they never done so before that point? As with other questions, evolutionary theory has no scientific answer to give. Have a look at how an evolutionist publication answers the question:
The heterotroph hypothesis suggests that the earliest organisms were heterotrophs that fed on a soup of organic molecules in the primitive ocean. As these first heterotrophs consumed the available amino acids, proteins, fats, and sugars, the nutrient soup became depleted and could no longer support a growing population of heterotrophs. …Organisms that could use an alternate source of energy would have had a great advantage. Consider that Earth was (and continues to be) flooded with solar energy that actually consists of different forms of radiation. Ultraviolet radiation is destructive, but visible light is energy-rich and undestructive. Thus, as organic compounds became increasingly rare, an already-present ability to use visible light as an alternate source of energy might have enabled such organisms and their descendents to survive. 74
The book, Life on Earth, another evolutionist source, tries to explain the emergence of photosynthesis in this way:
The bacteria fed initially on the various carbon compounds that had taken so many millions of years to accumulate in the primordial seas. But as they flourished, so this food must have become scarcer. Any bacterium that could tap a different source of food would obviously be very successful and eventually some did. Instead of taking ready-made food from their surroundings, they began to manufacture their own within their cell walls, drawing the necessary energy from the sun.75
These imaginary fantasies, no different from fairy tales, go completely beyond the bounds of intelligence and science. The actual meaning of these few explanatory sentences emerges when considered for a few seconds in the light of intelligence and science.
First of all, the inevitable end of any living thing which cannot find food is death. The only thing that varies is how long each living thing can survive starvation. After remaining hungry for a length of time, all the functions of every living thing start to cease because they cannot obtain energy by burning food. There is no need to be a scientist to see the truth of this. Anyone can understand this through simple observation. But evolutionist scientists expect that a living thing, whose every function has ceased, can develop a new method of feeding over time and then implement it. They furthermore believe that it can "decide" to develop such a new system and then "begin to produce it" in its own body. If evolutionist scientists carry out an experiment and wait to see whether such a thing happens, the outcome is very clear: The bacteria will soon die.
Another problem facing evolutionist scientists who expect bacteria to produce their own food is the difficulty of the endeavour. In the preceding sections we stressed that photosynthesis depends upon very complex systems. And of all the processes known in the world, this is really the most complicated, its general outlines having been only partly uncovered in our day; many of its stages are still a mystery to man.
This is what evolutionist scientists expect of a dying bacteria: that it should by itself develop this process - a process which has not been artificially reproduced even in reactors with the most highly developed technology.
One of the most striking admissions that such a complicated event as photosynthesis could not have evolved over time is again made by Professor Ali Demirsoy:
Photosynthesis is a rather complicated event, and it seems impossible for it to emerge in an organelle inside a cell, because it is impossible for all the stages to have come about at once, and it is meaningless for them to have emerged separately. 76
Another confession on this subject comes from the evolutionist Hoimar von Ditfurth. In his book, Im Anfang War Der Wasserstoff (In the Beginning was Hydrogen) von Ditfurth says that photosynthesis is a process that cannot possibly be learned:
No cell possesses the capacity to 'learn' a process in the true sense of the world. It is impossible for any cell to come by the ability to carry out such functions as respiration or photosynthesis, neither when it first comes into being, nor later in life.77


Land Plants' Alleged Ancestors: Algae

According to the imaginary scenario of evolution, algae, or sea moss, are the ancestors of land plants, and it is suggested that these first evolved some 450 million years ago in the Paleozoic Age. But the fossils which have been discovered in recent years have ruined all the evolutionists' scenarios and their evolutionary family tree.
The green algae in the picture are one or multi-celled organisms which can carry out photosynthesis.
In Western Australia in 1980, 3.1 to 3.4 billion-year-old fossil reefs were found.78 These consisted of blue-green algae and organisms reminiscent of bacteria. This discovery created the worst kind of chaos for the evolutionists, because it toppled their imaginary evolution tree. According to this tree, algae should have emerged 410 million years ago in the Paleozoic Age. Another interesting point is that the oldest discovered algae had exactly the same complex structures as today's. A scientists investigating the matter said:
The oldest fossils so far discovered are objects fossilized in minerals which belong to blue green algae, more than 3 billion years old. No matter how primitive they are, they still represent rather complicated and expertly organised forms of life.79
And at this point it occurs to one to put this question to the evolutionists:
"How can the theory of evolution, which claims that countless forms of land plants evolved from algae in a period of 100 to 150 million years, explain that algae dated nearly a billion years have exactly the same structure as today's algae?"
Defenders of the theory of evolution ignore this question and others like it, and try to avoid the truth.
Another dead-end for the story of evolution from algae or water moss, is whether prokaryotic algae evolved from eukaryotic algae, or vice versa? Evolutionists disagree among themselves on this matter. They cannot decide on the type of algae. At this point it will be useful to examine cell types in a general way.
Evolutionists first claimed that the complex-structured eukaryotic cell emerged from the simple-structured prokaryotic cell, seen at the top, and then formed living things. When they realised that this was not possible, they began to maintain the opposite thesis.
Prokaryotic cells resemble bacteria, with no organelles inside them. Whereas eukaryotic cells are animal and plant cells, and have more complex structures than prokaryotic cells. The theory of evolution first claimed that the eukaryotic cell evolved from the prokaryotic. But when evolutionists realised that this was impossible, they changed their minds and began to maintain the opposite. But these claims went no further than being speculation. The quandary that evolutionists found themselves in on the matter is admitted by Robert Shapiro, himself an evolutionist. W.R. Bird writes:
A postulated transition from prokaryotic algae to eukaryotic algae was questioned because the transition was "so fraught with confusion and contradiction that most modern biologists have ignored it." And subsequently was abandoned. The confusion is so great generally that some researchers have proposed that eukaryotes evolved into prokaryotes, rather than the reverse. The fossil evidence is not much more clear. It is clear that prokaryote fossils exist in Precambrian rocks, "but we do not know the time or the circumstances of their origin", Shapiro notes.80


The Claim that Algae Moved on to the Land and Turned into Today's Land Plants

According to the following sections of the scenario, as a result of the currents in the sea, algae clung to the shores, and began to move inland by turning into land plants shortly thereafter. How close is this assumption of the evolutionists to the truth? Let us have a look.
There are a number of influences that would make it impossible for algae to live after moving on shore. Let us take a brief look at the most important of them.

1. The danger of drying out: For a plant which lives in water to be able to live on land, its surface has first of all to be protected from water loss. Otherwise the plant will dry out. Land plants are provided with special systems to prevent this from happening. There are very important details in these systems. For example, this protection must be such that important gases such as oxygen and carbon-dioxide should be able to leave and enter the plant freely. At the same time, it is important that evaporation be permitted. For such a sensitive system to come about by chance is beyond the realm of possibility: it is impossible. If a plant does not have such a system, it cannot wait millions of years to develop one. In such a situation, the plant will soon dry up and die. The very complexity of these special systems demonstrate the impossibility of their having come about by coincidences over millions, or even billions of years.

2. Feeding:Marine plants take the water and minerals they need directly from the water. For this reason, any algae which tried to live on land would have a food problem. They could not live without resolving it.

3. Reproduction: Algae, with their short life span, have no chance of reproducing on land, because, as in all their functions, algae also use water in dispersing their reproductive cells. Then to be able to reproduce on land, they would need to possess multi-cellular reproductive cells, like those of land plants, which are covered by a protective layer of cells. Lacking these, any algae which found themselves on land would be unable to protect their reproductive cells from danger.

4. Protection from oxygen:Any algae, which arrived on land, would have taken in oxygen in a decomposed form up until that point. According to the evolutionists' scenario, now they would have to take in oxygen in a form they had never encountered before, in other words, directly from the atmosphere. As we know, under normal conditions the oxygen in the atmosphere has a poisoning effect on organic substances. Living things which live on land possess systems which stop them being harmed by it. But algae are marine plants, which means they do not possess the enzymes to protect them from the harmful effects of oxygen. So on reaching land, it would be impossible for them to avoid these effects. Neither is there any question of their waiting for such a system to develop, because they could not survive on land long enough for that to happen.
When these claims of the theory of evolution are looked at from a different point of view, they can be seen to be defective in logic. For example, let us consider the environment algae live in. The water which evolutionists claim they left offers countless possibilities for them to survive. For example, the water protects and insulates them from excessive heat and provides the minerals they need. At the same time it allows them to make their own carbohydrates (sugar and starch) from carbon-dioxide by absorbing sunlight in photosynthesis. In short, water is an ideal environment for algae, both for their physical characteristics and for the systems which carry out their functions. In other words there is no need for algae to leave the water, where they can survive quite comfortably, to live on the land, nor are their general structures suited to such a life.
We can liken this situation to a human being leaving the Earth and going and trying to live on another planet, while he has a perfect environment to live in on Earth (an atmosphere, food, gravity, and many other conditions). Ideally suited as he is to the conditions of this world today, from the moment he leaves the Earth to go to another planet, he will be unable to survive. It is just as impossible for him to go elsewhere as it is for algae to leave the water and start to live on land.
In the face of these truths, evolutionists' traditional gambit is to suggest the fanciful notion that algae adapted themselves to life on land. Whereas it is quite clear to anyone with normal intelligence that algae's doing such a thing as deciding to live on land, bringing about the necessary physical changes to be able to do this within their own structures, and then moving on to the land, is quite out of the question and just an unreasonable fantasy. It is impossible even for man, the most superior of living things, who possesses intelligence, consciousness and will, to bring about any mutations in his body to enable him to live in a different environment. For example, if a man wants to fly, it is inconceivable that he should develop wings, or turn his lungs into gills if he wants to live in the water.
What we are discussing here is algae, which do not have the intelligence, will, power of decision, judgement, or power of evaluation to bring about changes in their own organisms or direct any intervention in them. But how interesting it is that evolutionists fall into the illogicality of ascribing all of these properties to algae, all for the sake of remaining loyal to their theory, and at the price of looking ridiculous.
As we have seen, algae have no chance of going on to land and living there. From the first moment they go on to land they need to have many flawlessly functioning mechanisms to allow them to live there, as land plants do. For these mechanisms to come into existence, they need to have information on them recorded in their own DNA, right from the start. In the experiments he carried out using plants towards the end of the 1800s, the famous biologist Gregor Mendel revealed the genetic laws in living things, and discovered that the features of plants and other living things are carried down to later generations by chromosomes. In other words, every species of living thing maintains its own characteristics in its DNA, from generation to generation.
Finally, the truth which emerges is this: No matter how much time passes, no matter what the conditions, it is impossible for algae to turn into land plants.